DAQ and Thresholds

Leon Mualem
University of Minnesota

Data Rates

- Driven by Cosmic Ray induced Muons
- ~250kHz, leading to ~400Hz/channel or 12kHz/module rate
 - 120kB/module/s
 - But 23,808*120kB/s=~3GB/s

Noise Data Rates

- Determined by noise level and threshold
- Noise \sim Gaussian σ =2.5pe
- Data output 10 bytes/hit above threshold
- 10⁶ time slices per second
- Maximum data rate— 32chan*10bytes*8bits/byte*10⁶=2.5Gbps/box
- 23,808*2.5Gbps= ~ 60 TB/s

Noise Rate per box vs. Threshold

Noise Data Rate vs. Threshold

Noise in Events

- Largest events are quasielastic numucc events.
- Assume ~2m in each view, 50 strips
- ~100 planes/GeV, ~300 planes long
- ~15000 strips in an event
- Use the noise rate and the number of strips to calculate the noise contamination of an event.

Noise per event vs. Threshold

Conclusions

- DAQ rate limit (ethernet) limits threshold to ~8pe minimum
- Contamination of events ~10 noise hits per event at 8pe, ~1 hit/event at 9pe.
 - -10 hits at 8pe ≈<30MeV
- $8pe = 3.2\sigma$ for noise of 2.5pe
- Add some conservatism, demonstrated 3.1pe noise so far, so use 3.2*3.1=10pe
 - (had been using 20 before)

But Wait, There's More

- There is a non-Gaussian tail associated with the APD system.
- Assuming that this noise will be present, it will limit the threshold.

Threshold limits in reality (M=50)

At gain of 50 the threshold is ~21pe to keep rate limited to 1/4 of muon rate

Threshold 1:---:-- 100)

At gain of 100 the threshold is ~15pe to keep rate limited to ¹/₄ of muon rate

Threshold limits in reality (M=125)

At gain of 125 the threshold is ~18pe to keep rate limited to 1/4 of muon rate

Threshold limits in reality (M=150)

At gain of 150 the threshold is ~24pe to keep rate limited to ¹/₄ of muon rate

Threshold vs. Gain

Let Excel fit a parabola, and it looks like M=100 is not far from optimal

Conclusions 2.0

- Noise is not entirely described by a Gaussian.
- Evidence not shown, but this tail can be reduced by further cooling
- It may optimize better to cool more and reduce the light output.
- The non-Gaussian tail limits the threshold in reality to about 15pe for a noise rate 4X less than the muon rate.